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Abstract

A fundamental problem in limnology and oceanography is the inability to quickly
identify and map distributions of plankton. This thesis addresses the problem by
applying statistical machine learning to video images collected by an optical sam-
pler, the Video Plankton Recorder (VPR). The research is focused on development
of a real-time automatic plankton recognition system to estimate plankton abun-
dance. The system includes four major components: pattern representation/feature
measurement, feature extraction/selection, classification, and abundance estimation.

After an extensive study on a traditional learning vector quantization (LVQ)
neural network (NN) classifier built on shape-based features and different pattern
representation methods, I developed a classification system combined multi-scale co-
occurrence matrices feature with support vector machine classifier. This new method
outperforms the traditional shape-based-NN classifier method by 12% in classification
accuracy. Subsequent plankton abundance estimates are improved in the regions of
low relative abundance by more than 50%.

Both the NN and SVM classifiers have no rejection metrics. In this thesis, two
rejection metrics were developed. One was based on the Euclidean distance in the
feature space for NN classifier. The other used dual classifier (NN and SVM) voting as
output. Using the dual-classification method alone yields almost as good abundance
estimation as human labeling on a test-bed of real world data. However, the distance
rejection metric for NN classifier might be more useful when the training samples are
not “good” ie, representative of the field data.

In summary, this thesis advances the current state-of-the-art plankton recogni-
tion system by demonstrating multi-scale texture-based features are more suitable
for classifying field-collected images. The system was verified on a very large real-
world dataset in systematic way for the first time. The accomplishments include
developing a multi-scale occurrence matrices and support vector machine system, a
dual-classification system, automatic correction in abundance estimation, and ability
to get accurate abundance estimation from real-time automatic classification. The
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methods developed are generic and are likely to work on range of other image classi-
fication applications.

Thesis Supervisor: Cabell S. Davis
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Title: Associate Scientist, WHOI
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C2, Chaetoceros chains; C3, Chaetoceros socialis colonies; C4, hydroid

medusae; C5, marine snow; C6, copepod; C6*, “unknown”. . . . . . .

Mean classification accuracy from different feature representation meth-
ods, where the unit is in percent. The abbreviations are as follows: MI
- moment invariants, FD - Fourier descriptors, SS - shape spectrum,
MM - morphological measurements, CM - co-occurrence matrices, RL -
run length, EF - edge frequency, PS - pattern spectrum, WT - wavelet
transform. The best performance for single feature method is the co-
occurrence matrices method, which has the average of classification
accuracy of 74%. It is clear to see that the texture-based methods are

superior than shape-based methods. . . . . . . . . . ... ... .. ..

Standard deviation of classification rates from different feature repre-
sentation methods, where the unit is in percent. The abbreviations are
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2.1

5.2

5.3

5.4

Confusion matrix for EN302, VPR Tow 7, based on the co-occurence
matrix classifier using hold-out method. Column and row heading are
coded as: C1, copepod; C2, rod-shaped diatom chains; C3, Chaeto-
ceros chains; C4, Chaetoceros socialis colonies; C5, hydroid medusae;
C6, marine snow; C7, ’other’; and P,, probability of detection. True
counts (i.e. human counts) for a given taxa are given in the columns,
while counts by automatic identification (i.e. computer counts) are
given in the rows. Correct identifications by the computer are given
along the main diagonal, while the off-diagonal entries are the incorrect

identification by the computer. Overall accuracy for this classifier was
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Mean confusion matrix for EN302, VPR Tow 7, based on learning
vector quatization method neural network classifiers built with different
randomly selected sets of 200 training ROIs using hold-out method
[34]. Column and row headings are as in Table 5.1. True counts (i.e.
human counts) for a given taxa are given in the columns, while counts
by attomatic identification (i.e. computer counts) are given in the rows.
The correct identifications by the computer are given along the main
diagonal, while the off-diagonal entries are the incorrect identification

by the computer. Overall accuracy of this classifier was 61%. . . . . .

Performance of the classifier with different kernel widths (o), regulation
penalty (C) and kernel types, where d is the polynomial degree and «
is the kernel coeflicient. The recognition rate on the independent test

set is shown. . . . . . . . .

Kullback-Leibler(KL) distance estimation for difference in abundance
between COM-SVM and hand-sorted and between CSF-NN and hand-
sorted. Row headings are as in Table 5.1. The KL distance is dimen-
sionless. For two identical abundance curves, the KL distance is O,
while for two random distributions, the KL distance is 0.5. Note lower

values of COM-SVM than CSF-NN for all four taxa. . . .. .. . ..
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g1

6.2

Confusion matrix of the dual-classification system, using the leave-one-
out method. Randomly selected images (200 per category) from EN302
VPR tow 7 were used to build the confusion matrix. C1: copepods, C2:
rod-shaped diatom chains, C3: Chaetoceros chains, C4: Chaetoceros
socialis colonies, C5: hydroid medusae, C6: marine snow, C7: other,
C7*:. unknown, Pp: probability of detection (%), SP = specificity
(%). NA: not applicable. True counts (i.e. human counts) for a given
taxa are given in the columns, while counts by classification system are
given in the rows. Correct identifications by the computer are given
along the main diagonal, while the off-diagonal entries are the incorrect
identification by the computer. All data are counts, except in the last
row and last column, which are percent values. Although images from
the “other” category are not needed to train the dual-classification
system, they are necessary to evaluateit. . . . . . ... ... ... ..
Confusion matrix of the single LVQ-NN classifier, using the leave-one-
out method. Images used were the same as those in Table 6.1. Ab-
breviations as in Table 6.1. All data are counts, except in the last row

and last column, which are percent values. . . . . . . . ... .. ...
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Chapter 1

Introduction

The vast majority of species in the ocean are plankton. The term plankton was
coined by the German scientist Victor Henson at the University of Kiel in 1887 from
the Greek word “planktos”, meaning “drifter”, to describe the passively drifting or-
ganisms in freshwater and marine ecosystems. Many species are planktonic for only
part of their lives (meroplankton), including larvae of fish, crabs, starfish, mollusks,
corals, etc. Other species are always planktonic (holoplankton), including the many
species of phytoplankton and copepods. As primary producers, phytoplankton are
responsible for approximately 40% of the annual photosynthetic production on earth.
Phytoplankton and their predators, zooplankton, play important roles in processes
such as the carbon cycle, the biological pump, global warming, harmful algal blooms
and coastal eutrophication. As the base of the ocean food web, plankton play impor-
tant roles in sustaining commercial marine fisheries. In order to better understand
the marine ecosystem, knowledge of the size structure, abundance, mass, and species
composition of plankton is crucial. Such measurements are difficult however, since
plankton distributions are notoriously patchy and require high-resolution sampling
tools for adequate quantification [45, 61, 120, 108]. In spite of over a hundred years
of research [168], our understanding of the structure of aggregations of plankton is
still very limited. Taxa-specific abundance at both fine-scale temporal and spatial
resolution is necessary to assess theoretical ecological models such as those of Riley

[134], Fasham [46], Aksnes et al. [2], Lynch et al. [107], Miller et al. [115], and
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Carlotti et al. [17].

1.1 Motivation

The advent of new optical imaging sampling systems [31] in the last two decades offers
an opportunity to resolve taxa-specifc plankton distribution at much higher spatial
and temporal resolution than previously possible with net, pump, and bottle collec-
tions. Optical imaging systems rapidly create large amounts of digital image data and
ancillary environmental data that need to be analyzed and interpreted. Analyzing
the image data can be accomplished using manual processing by trained experts. In
addition to the high cost of expert time, such classification processes are tedious and
time-consuming, which can cause biased results [28]. On the other hand, advances in
pattern recognition and machine learning make it possible to automatically classify
plankton images into major taxonomic groups in real time. In this thesis, [ take
this approach and pursue the automatic classification of these images via statistical

pattern recognition.

1.2 Statistical pattern recognition

Statistical pattern recognition has been used successfully in a number of applications
such as data mining, document classification, biometric recognition, bioinformatics,
remote sensing and speech recognition. In statistical pattern recognition, a pattern
is represented by a set of measurements, called features. Each pattern then can be
viewed as a point in the multi-dimensional feature space. Statistical learning theory
is then applied to construct decision boundaries in the feature space to separate the
different pattern classes. A recognition system is usually operated in two phases:
training and classification, as shown in Figure 1-1.

Incoming video from an optical imaging system, in this case a Video Plankton
Recorder (VPR) [31, 32, 33, 34, 35], is pre-processed by a focus detection program to

extract in-focus objects, called regions of interest (ROI), from each video frame. These
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ROIs are saved as Tagged Image File Format (TIFF) image files. A subset of these
files is manually labeled (identified), and serves as training samples. In the training
phase, a set of measurements (features) is computed from each image using different
pattern representation methods. Feature extraction is used to linearly combine dif-
ferent features and extract the most salient features for classification. Subsequently,
to train a classifier, a learning algorithm is employed to partition the feature space
into subspaces belonging to different classes (e.g., species). An important feedback
path allows a designer to interact with and optimize difterent pattern representation
methods, feature extraction algorithms and learning strategies. The arrows of pattern
representation and feature extraction between training and classification phases imply
that the same methods are used in classification which are optimized during training.
In the classification phase, the trained classifier uses the image-to-feature mapping,
which is learned during training, and assigns an input image to a class based on its

location relative to decision boundaries in the feature space.

1.2.1 Features

Features are measurable heuristic properties of patterns of interest. The rationale of
pattern representation and feature extraction is to avoid the curse of dimensionality
[8], the exponential growth of hypervolume as a function of dimensionality. For most
practical systems, labeled samples require expert time, thus are expensive to obtain,
that is to say, only limited labeled samples are available. In such cases, it has been
observed that additional features may degrade the classifier performance, which is re-
ferred to as the peaking phenomenon [76, 130, 129]. Thus a dimensionality reduction
(feature extraction and selection) step is essential, where only a small number of the
most salient features are selected to improve the generalization performance (classi-
fication performance on samples “unseen” during training) of a classification system.
At the same time, this step also reduces the storage requirements and processing

time.
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Figure 1-1: Schematic diagram of the pattern recognition system.
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1.2.2 Statistical learning theory

The fundamental work of Vapnik [159, 160, 161] set the foundation for learning from
finite samples by using a functional analysis perspective with modern advances of
probability and statistics, and revived classical regularization theory. The basic idea
of Vapnik’s theory is to limit the model capacity by constraining decision boundaries
in a “small” hypothesis space, which is dependent on the training samples. This
is closely related to classical regularization theory in machine learning and overfit-

ting/overtraining in pattern recognition.

More formally, learning from examples can be formulated in the statistical learning
theory framework. Suppose we have two sets of variablesx € X C R*andy € Y C R.
A probability density function p(x,y) relates these two sets of variables over the whole
domain X x Y. We are provided with a data set D; = {(x,y) € X x Y}'. They are
called the training data, and are obtained by sampling the probability density function
p(x,y) [ times. Given the data set D), the problem of learning lies in providing an
estimator (a classifier/a learning machine) as a function f, : X — Y, which can be
used to predict a value of y; given any value of x; € X. The functions f,(x) are
different mappings with adjustable parameters c. A standard way to solve the above
learning problem is to define a risk function, which computes the average amount of
error (cost) associated with an estimator, then choose the estimator which has the

lowest risk. The expected risk of an estimator is defined as,

B = / / (ol a o (1.1)

Here V is the loss function, and « are adjustable parameters. A particular choice of
determines a learning machine. For example, a neural network with fixed architecture
is a learning machine, where a are the weights and bias of the network. The target

estimator is the function f,- which has minimal expected risk,

Jar (X} = arg main B fa) (1.3
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In practice, the probability density function p(x,y) is unknown, and the expected risk
cannot be calculated using Eq. 1.1. To overcome this problem, an induction principle
is used to approximate the expected risk from training samples. This is the so-called
empirical risk minimization (ERM) induction approach. The empirical risk is defined

as,

/4
1
emp fa = ?Z yzvfa xz (13)

For limited training samples, the empirical risk is not always a good indicator of
the generalization ability of a learning machine. The structural risk minimization
principal [160] states that, for any o € A and [ > h, the following bound holds with

a probability of of at least 1 — 7,

R(2) < Bumpla) + \/ Al (1.4)

The parameter h is a non-negative integer called the Vapnik Chervonenkis (VC)
dimension. It is a measurement of capacity of a set of functions. The second term on
the right side of Eq. 1.4 is called the VC confidence. Consequently, the essential idea
of structural risk minimization can be restated thus: for a fixed sufficiently small 7,
choose the function f,(x) which minimizes the right hand side of Eq. 1.4. For more
information on this topic, please refer to Vapnik [160, 161], Burges [15], and Evgeniou

[44].

1.3 An overview of related work

Research on automatic plankton classification has been on-going for many years
[82, 81, 135, 69, 25]. Early systems worked on images taken under well-controlled lab-
oratory conditions, and had not been applied to field-collected images. More recently,
artificial neural networks have come to play a central role in classifying plankton im-
ages [145, 12, 27, 150, 149, 154, 28]. However, the datasets used to develop and test

these classifiers were usually fairly small [150, 28], and, furthermore, only a subset of
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distinctive images was chosen to both train and test the classifier. Since a classifier
needs to classify all the images from the field, including rare species and difficult ones,
even those that cannot be identified by a human expert, the accuracy reported for
a classifier built from only distinctive images will be generally optimistically biased.
The classifier performance was usually much worse when it was applied to all field
data [34].

The features used in the early systems were mostly shape-based. Jeffries et al. [81]
used moment invariants, Fourier descriptors and morphometric relations as features.
Although these features worked quite well under well-defined laboratory imaging con-
ditions and the overall recognition rate reported by Jeffries et al. was 90% for six
taxonomic groups, the system required significant human interaction and was not
suitable for in situ applications.

Initial automatic identification of VPR images was carried out using the method
described in Tang et al. [150] which introduced granulometry curves [162|, along with
traditional features such as moment invariants, Fourier descriptors and morphome-
tric measurements. This method used a learning vector quantization (LVQ) neural
network as the classifier [149] and achieved 92% classification accuracy on a subset of
VPR images for six taxonomic groups. Only distinctive images were used in training
and testing the classifier in this initial study. A detailed experiment was conducted
in Chapter 3 to show the performance of the system when rare species and diffi-
cult images were included in training or testing samples. The average classification
performance on the whole dataset was 61% [34].

The performance disagreement between previous methods [81, 150] and current
study [34] is due to the nature of field-captured images. Unlike the well-controlled
laboratory conditions, field images are often occluded (objects truncated at edge of
image), and shape-based features such as moment invariants and Fourier descriptors
are very sensitive to occlusion. In addition, a significant number of field-collected im-
ages cannot be identified by a human expert due to object orientation and position in

the image volume'. These unidentifiable images were not used in training and testing

'Objects can be hard to identify due to their position in the image volume. If part of the object
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the classifier [150] (although occluded images were included). A recent study by Luo
et al. [106] showed that including unidentifiable objects lowered the recognition rate
from 90% to 75% for their dataset from the shadow image particle profiling evaluation
recorder. In order to better estimate species specific abundance, a number of works
has shown that it was important to include an “other” [34] or “reject” [58] category.

In addition to occlusion, nonlinear illumination of images makes perfect segmenta-
tion (binarization) impossible, even after background brightness gradient correction.
Due to the grayscale gradient, the same object can have different segmented shapes
depending on where the object is in the field-of-view, thus causing shape-based fea-
tures to be less reliable.

Another type of feature we can extract from the grayscale images is a texture-based
feature. However, due to the early success of shape-based features on plankton images
from well-controlled laboratory imaging conditions, texture-based features have not
been widely used in plankton image recognition.

Texture-based features were compared against classic shape-based features. The
important finding was that the texture-based features were more important than the
shape-based features to classify field-collected plankton images. The main cause was
that texture-based features were less sensitive to occlusion and projection variance

than shape-based features.

1.4 Data

The data set was obtained from a 24-h VPR tow (VPR-7) in the Great South Chan-
nel off Cape Cod, Massachusetts, during June 1997 on the R/V Endeavor. The VPR
was towed from the ship in an undulating mode, forming a tow-yo pattern between
the surface to near bottom. The images were taken by the high magnification cam-

era, which had an image volume of 0.5ml. The total sampled volume during the

is out of this volume, the resulting image will be occluded. Nonlinear illumination makes objects
from the dark region more likely to be occluded by global segmentation, a problem correctable by
background gradient removal [35]
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deployment was approximately 2.6 m® 2. There were over 20,000 images captured
during this tow. All the images were manually identified (labeled) by a human expert
into seven major categories (copepod, rod-shaped diatom chains, Chaetoceros chains,
Chaetoceros socialis, hydroid medusae, marine snow, and the “other” category, com-
prising rare taxa and unidentifiable objects). These are the most abundant categories
in this area. In this tow, about 21% of the images belonged to the “other” category.
Most of these “other” images were unidentifiable by human experts, and the rest were
rare species, including coil-shaped diatom chains, ctenophores, chaetognaths, poly-
chaetes and copepod nauplii (see Davis et al. [34]). The manual identification took
several weeks to accomplish. Representative samples (images) are shown in Figs. 1-2,

1-3, and 1-4. Manual labels were treated as ground truth for comparing different

classification results.

1.5 Thesis overview

This thesis consists of seven chapters and is organized as follows.

Chapter 1: Introduction- I introduce the importance of automatic classifica-
tion of plankton images. I then set up the problem in the framework of statistical
pattern recognition, and review basic concepts on statistical learning and related
work. Finally, I describe the data set used in this thesis.

Chapter 2: Data acquisition- I give an overview of water column plankton
samplers, and then focus on the Video Plankton Recorder (VPR). I develop three
algorithms of focus detection and examine four short sections of video. I then compare
the results from three algorithms to the manual examination in terms of probability
of detection and probability of false alarm.

Chapter 3: Classification method: analysis and assessment- [ present a
detailed assessment of the application of a learning vector quantization neural network

(LVQ-NN) on the data set. More specifically, I examine the following: classifier

72As pointed out in Davis et al. [35], although the volume imaged by VPR is small compared to
the volume filtered by a plankton net, the VPR still can provide an equivalent or better estimate of
plankton abundance.
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Figure 1-2: Example VPR images of copepods, rod-shaped diatom chain, Chaetoceros
socialis colonies and the “other” category. Fifty randomly selected samples are shown here.



Chaetoceros chains Marine Snow
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Figure 1-3: Example VPR images of Chaetoceros chains and marine snow. Fifty randomly
selected samples are shown here.
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Hydroid Medusae

Figure 1-4: Example VPR images of hydroid medusae. Fifty randomly selected samples
are shown here.



complexity, feature length, learning curve, presentation order of training samples,
and different training samples. Next I propose a two-pass classification system and
compare the result with both the single LVQ-NN classifier and the single LVQ-NN
classifier with statistical correction. Finally, I modify the LVQ-NN to have an outlier

rejection metric based on the mean distance of correctly classified training samples.

Chapter 4: Pattern presentation- First I give an overview of pattern repre-
sentation/feature measurement methods. I group the pattern presentation methods
into three major groups, namely, shape-based, texture-based, and other methods. I
then conduct a comparison study between shape-based features and texture-based
features on a random set of the plankton data. I find the texture-based features
are more important than shape-based features to classify field-collected images. I
keep the comparison results as guidelines for choosing different feature presentation

methods in the later chapters.

Chapter 5: Co-occurrence matrices and support vector machine- [ inves-
tigate the multi-scale co-occurrence matrices, and support vector machines to classify
the plankton image data set. From Chapter 4, [ find that texture-based features are
more robust for classifying field-collected plankton images with occlusions, nonlin-
ear illumination and projection variance. [ demonstrate that by using features from
multi-scale co-occurrence matrices and soft margin Gaussian kernel support vector
machine classifiers, a 72% overall probability of detection can be achieved compared
to that of 61% from a neural network classifier built on combinded shape-based fea-
tures. Subsequent plankton abundance estimates are improved in regions of low

relative abundance by more than 50%.

Chapter 6: Dual classification system- I incorporate a learning vector quan-
tization neural network classifier built from combined shape-based features and a
support vector machine classifier with texture-based features into a dual-classification
system. The system greatly reduces the false alarm rate of the classification, thus
extends the regions where the specificity curve of classification is relative flat, which
makes global correction of abundance estimation possible. After automatic correction,

the abundance estimation agrees very well both in high and low relative abundance
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regions. For the first time, I demonstrate an automatic method which achieves abun-
dance estimation as accurately as human experts.

Chapter 7: Conclusions and future work- First, I summarize the major
contributions of this thesis, and then discuss the possibility of extending the existing

system to color or 3-D holographic images.
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Chapter 2

Data Acquisition

In this chapter, I first overview water column plankton samplers in Section 2.1, then
decribe one specific optical sampler, the Video Plankton Recorder, in detail in Section
2.2. The main focus of this chapter is to discuss the focus detection program, which
is discussed in Section 2.3. I develop three new focus detection algorithms, and
compare them against human judgment on four video sections from VPR. This is the

first quantitative study of focus detection.

2.1 Water column plankton samplers

The development of quantitative zooplankton sampling systems can be traced back
to the late 19th and early 20th centuries. Non-opening/closing nets [67, 83|, simple
opening/closing nets [71] and high-speed samplers [4] all began to be employed at
that time. All these systems have evolved with advances in technology, and are still
widely used for plankton survey programs. For example, non-opening/closing nets,
such as the Working Party 2 (WP2) net [49], modified Juday net [1], and Marine
Resources Monitoring Assessment Prediction (MARMAP) Bongo net [126] are still
used in large ocean surveys; simple opening/closing nets similar to those developed
by Hoyle [71], Leavitt [96], Clarke and Bumpus [24] are still manufactured and used;
high-speed samplers are also in use, such as the continuous plankton recorder [60],

which has evolved over 30 years, and become the main sampling system in the North
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Atlantic plankton survey [164].

Since the 1950s, the concept of plankton patchiness has been well established,
and it triggered the development of closing cod-end systems and multiple net systems
in the 1950s and 1960s. Cod-end samplers such as the Longhurst-Hardy plankton
recorder [103] had problems with hang-ups and stalling of animals in the net which
caused smearing of the distributions of animals and loss of animals from the recorder
box [63]. The system was modified by Haury et al. to reduce these sources of bias
and used to study plankton patchiness in a variety of locations [62, 64]. Multiple net
systems [169, 172 were developed to fix these problems by opening and closing nets

in specific portions of the water column.

With the advances in charge-coupled device (CCD) and computer technology,
the 1980s and 1990s saw a boom of optical plankton sampling systems. Optical
systems have a number of advantages over net-based systems. The optical systems
can provide much finer vertical and horizontal spatial resolution than the net-based
systems. Optical systems have the potential to provide abundance estimates at short
temporal intervals along the tow path [32]. Furthermore, delicate and particulate
matter that may be damaged by net collection can be quantified by optical systems
[5, 38]. Image-forming systems have the potential to map taxa-specific distribution
in real time [34]. However, optical systems usually have a smaller sampling volume
than net-based systems given the same tow length. Thus rare organisms may remain

undetected with optical sampling systems.

Optical systems can be divided into two categories depending on whether the sys-
tem produces images of organisms or not. Non-image-forming systems such as the
optical plankton counter [68] use the interruption of a light source to detect and esti-
mate particle size. The family of image-forming systems has grown continuously since
1990. The Ichthyoplankton Recorder (IR) [50, 99], Video Plankton Recorder (VPR)
[31], Underwater Video Profiler (UVP) [55], Optical-Acoustic Submersible Imaging
System (OASIS) [75], In situ Video Camera [152], FlowCam [144], Holocamera [88],
Shadowed Image Particle Profiling and Evaluation Recorder (SIPPER) [138], Zoo-
plankton Visualization and Imaging System (ZOOVIS) [10], HOLOCAM [166], In
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situ CritterCam [147], and Optical Serial Section Tomography (OSST) [48] all belong
to this category. In this thesis, images from the VPR were used. However, the algo-
rithms developed in this thesis are generic, and readily applied to images from other

optical plankton sampling systems.

Another group of plankton sampling systems is acoustic-based [170, 47]. Such
systems use acoustic backscattering to measure the size distribution of particles and
plankton. Hybrid systems also have been developed, combining optical and acous-
tic sampling, e.g., the VPR has been combined with multifrequency acoustics on
the Blo-Optical Multi-frequency Acoustical and Physical Environmental Recorder
(BIOMAPER-II) [173]. For more detailed review of plankton sampling systems,
please refer to Wiebe and Benfield [168].

Imaging plankton at sea while towing the sampler through the water at a 1-6 m/s,
requires a combination of magnifying optics, short exposure time, and long working
distance ( 0.5 m). The long working distance is needed to minimize detection and
avoidance of the sampler by the plankton. The short exposure time (e.g., 1 us) is
obtained using a strobe. The density of pixels on the CCD array, together with the
need to image enough details of the individual plankton to identify them, limits the
camera’s field-of-view (FOV) to 1 em for most mesozooplankton. For a depth of focus
of 3 ecm, the image volume is 3 cm?, and video rate of 60 fields per second (FPS),
yields 0.18 liter of water imaged per second. Given a typical coastal concentration of
mesozooplankton of 10 individuals per liter, the time between individual sightings is
0.55 seconds, and at 60 FPS, there are 33 video fields between sightings. Thus, only
a small fraction of the video fields will contain mesozooplankton. For typical survey
periods of several hours or days, the volume of video data collected is much too large
for human operators to process manually. (For example, VPR has the bandwidth of
6 Mb/s or 518 Gb/day). Automatic pre-processing of the data is essential [31, 33].
In this chapter, I focus on one such pre-processing method called focus detection.

Before discussing this method, a detailed description of the VPR is necessary.
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2.2 Video Plankton Recorder

The VPR system includes an underwater unit with video and environmental sensors,
and a deck unit for data logging, analysis and display (Figure 2-1). The underwater
unit has a video system with magnifying optics that images plankton and seston
in the size range of 100 microns to several centimeters [31, 33, 34, 35]. The initial
design [31] had four SONY XC-77 CCD cameras configured to simultaneously image
concentric volumes at different magnifications. The fields of view of the four cameras
were 0.7 x 0.56,3 x 2.4,5 x 4, and 8 x 6.4 cm? respectively. Depths of field were
adjustable by different aperture settings. The sampled image volumes in each field
ranged from 0.5 ml to 1 liter depending on the optical settings. The modified system
[33, 34] had two analog video cameras of high and low magnification respectively.
The high magnification camera had an image volume of about 0.5 ml per field, while
the low magnification camera had an image volume of about 33 ml per field. Early
testing determined that these two cameras provided the most useful information. The
high-magnification camera provided detailed images permitting identification to the
species level, while the low-magnification camera imaged larger organisms such as
ctenophores and euphausiids. Positioning the image volume at the leading edge of
the tow-body and having a wide separation of the cameras and strobe, permitted
imaging of animals in their natural undisturbed state.

The images studied in this thesis came from the high magnification camera, which
had a pixel resolution of about 10 microns. The cameras were synchronized at 60 fields
per second to a xenon strobe!. The VPR also included a suite of auxiliary sensors
that measured pressure, temperature, salinity, luorescence, beam attenuation, down-
welling light, pitch, roll, velocity and altitude. The environmental and flight control
sensors were sampled at 3 to 6 Hz. The underwater unit was towyoed at 4 ms ™!
using a 1.73 cm diameter triple-armor electro-optical cable. Video and environmental

data from the towbody were received via a fiber optic cable into the data logging and

'The current system has a single 1008 x 1018 digital camera with field of view from 5 x 5 mm? to
20 x 20 mm?, and the depth-of-field is objectively calibrated using a tethered organism. The images
were sampled at 30 frames per second [35]
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VIDEO PLANKTON RECORDER SYSTEM

Videolmages In  Hydrographic and Real Time Display of
Engineering DataIn  power 1o Hydro%raphy and Plankton
Video Images Recorded Vehicle istributions
on YCRs for Archiving

Fluorometer
Temperature Probe

Figure 2-1: Video Plankton Recorder system with underwater and shipboard components.
The VPR is towyoed at ship speeds up to 5 m/s, while video is processed in real-time on
board.
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focus detection computer on the ship.

The deck unit consisted of a video recording/display system, an environmen-
tal/navigational data logging system, an image processing system and a data dis-
play system. Video was time-stamped at 60 fields per second and recorded on SVHS
recorders. The video time code was synchronized with the time from the P-code
Global Positioning System. Latitude and longitude were logged with video time code

and environmental data at 3 Hz on a personal computer and a Silicon Graphiecs Ine

(SGI) workstation.

2.3 Focus Detection

Video with time code from the high magnification camera was sent to the focus
detection system, which included an image processor interfaced to a computer. Video
was first digitized at field rates, then in-focus objects were detected using an edge
detection algorithm. The regions of interest (ROI) were saved to the hard disk as

tagged image format files using the video time code as the filename.

2.3.1 Objective

The main objective of the focus detection algorithm is data reduction. The video
comes in from the video camera at 60 fields per second. As discussed above, a large
proportion of fields are devoid of in-focus objects. Early systems required a human
operator to scan through all the video fields to determine when an in-focus organism
was observed and to what species it belonged. Such processes were very slow and
tedious, and introduced a source of subjective error when a line was drawn between
in-focus and out-of-focus objects. This line could vary from person to person, and
from time to time. The objective of the focus detection algorithm is to replace the
human operator with a program which objectively extracts in-focus objects from the
video images. The focus detection algorithm is required to extract as many in-focus
objects as possible, while picking up as few out-of-focus objects as possible, all in recal

time. More formally, the focus detection program needs to have a high probability
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of detection, while maintaining a low probability of false alarm. A graphic user
interface (GUI) is available to select parameters such as segmentation threshold, Sobel
threshold, growth scale, minimum blob size, and minimum join distance (Figure 2-2).
Choosing different parameters sets the tradeoff between the probability of detection
and the probability of false alarm. A high probability of detection usually related
with a high probability of false alarm, which increased the level of difficulty of the
subsequent classification problem and required more disk space. On the other hand,
low probability of false alarm was related with a low probability of detection. The
effective sampling volume was reduced. A compromise between the probabilities of
detection and false alarm needed to be made by adjusting the controlling parameters

in the focus detection GUI.

- Real-Time Video kit - |=] x|

File RES1-Time Video Plan
Segmentation Thresh(High) JFFEN 0 ‘

Segmentation Thresh(Low] [ '
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Minimum Join Distance | 50 | _.' = .

Capture Source

{ Camera Frames/Second

« i M [ —

Zoghe 0 60
Source Files [FEmp
D estination Directory [=datatmphalaz
Julian Day 162
v Show Rois

wiite RBois — Image Control I_ ___Etart Capture |

Frames: 2700 F/S 11.36 R/F 0.40

Figure 2-2: The graphical user interface of real time focus detection program.
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2.3.2 Method

In-focus object detection involves brightness correction, segmentation, labeling, size
thresholding, edge detection, edge thresholding, coalescing and ROI generation. In-
coming videos are dynamically adjusted to correct temporal changes in mean bright-
ness by shifting the mean brightness of each video frame to a certain value. Transla-
tion instead of scaling is used in this normalization step to avoid changing brightness
gradients within the frame. Brightness correction is followed by segmentation which
involves binarization of gray-scale images into binary images. Pixels with brightness
above the threshold value are set as foreground while the rest of the pixels are sct as
background. After segmentation, a connectivity algorithm is used to check how the
foreground pixels connect to form blobs. The distinct blobs then are labeled from 1
to IV, where N is the number of blobs present in the video field. Due to the imaging
environment, there are many small blobs present in each frame. Since small objects
are impossible to identify in the later processing and require much processing time, a
size threshold is imposed, and consequently blobs below a minimum number of pixels
are ignored. A rectangular bounding box is placed around each blob which passes
size thresholding. A Sobel operator is applied to each blob to calculate the brightness
gradient of the subimages. The small gradients in the subimages are considered to be
noise instead of real edges, and the gradients of each subimage are further thresholded

in order to suppress this noise.

Three in-focus algorithms are developed based on these thresholded gradients. If
the blob is in-focus, the center position and size are saved. After in-focus checking
on all the blobs from one field is completed, the bounding box of an in-focus blob is
extended/shrunk according to the GUI growth scale setting. Planktonic organisms
usually are partially transparent or translucent. When binarized, one organism often
breaks into several blobs. A coalesce operation is applied to group the close in-focus
blobs into one blob. Two or more blobs are considered to coalesce if there are overlaps
after the bounding boxes relax or if the central distance between them is below a user-

defined value on GUI. The resulting subimage inside the bounding box is called region
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of interest (ROI), and is written to the disk as Tagged Image File Format with ROI

capture time as filename.

2.3.3 Algorithms

The motivation of the following algorithms is based on the observation that sharp
in-focus objects usually have strong edges (high gradient) between themselves and
their background, as well as inside themselves; while out-of-focus objects usually
lack such features. However, there are always exceptions. One such exception is
that highly saturated objects often reveal strong gradient between the objects and
their background whether the objects are in-focus or not. Such artifacts are due
to saturation of the objects. Three heuristic algorithms were developed to decide

whether an object was in-focus based on the gradient information.

1. Algorithm Al (edge pixels only):
A1l is an algorithm which ignores the strength of the gradient after the pixel is
determined as edge pixel. The number of edge pixels is defined as the number
of pixels whose gradient values are greater than some user specified threshold.

The focus level index is defined as,
N,
B o= 2.
L A ) ( 1)

where F}, is the focus level index, /N, is the number of edge pixels, and A is the
area which is the number of foreground pixels in the subimage. The object is

considered in-focus if F}, is greater than a fixed value.

2. Algorithm A2 (edge strength and additive brightness correction):
A2 is an algorithm which makes use of the number of edge pixels and their
gradient strength. In order to eliminate over-saturated blobs, which appear to
have a strong gradient at the boundary, a brightness compensation is made
to penalize such instances. The additive brightness correction is used in this

approach. The additive brightness correction is calculated as the difference
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between the mean brightness in the subimage and the mean brightness of the

field. The focus level index is calculated as,

Ne

A
= i_Bca 22
F 4xNeX;G (2.2)

G; is the gradient values from the subimage above a certain threshold, A is
the area of subimage defined as in Al, IV, is the number of edge pixels whose
gradient values are above a certain threshold, and B, is the additive brightness
correction term. An object is considered to be in-focus when F is greater than

a user specified threshold.

. Algorithm A3 (edge strength and multiplicative brightness correction):

A3 is an algorithm which uses only the gradient strength of edge pixels as well as
a multiplicative brightness correction. The multiplicative brightness correction
is calculated as the differences between the brightness in the subimage and the
mean brightness of the field. The focus level index was calculated as follows,

N,
e Gl
F=cx 2215 23)

N, )
B,

where Fy is focus level index, ¢ is a scaling constant, N, is the number of edge
pixels defined as in A2, G; is the gradient values from each subimage, and N,
i1s the number of pixels in the subimage. B, is the multiplicative brightness

correction term.

2.3.4 Result

Two video sections of the high magnification camera from cruise AN9703 in Mas-

sachusetts Bay conducted during March 11-15 1997 were manually examined and

used to “ground truth” the results of the three algorithms described above. The

videos were originally recorded on SVHS tape and later dubbed to BETACAM-SP

tape. The rationale of using BETACAM tape was to allow the human operator to go
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through the videos field by field more easily. During the manual counting process, a
human operator examined each field with the assistance of the segmentation program.
The total number of all the objects (numbers of blobs in segmented image) as well as
the number of in-focus objects in each field were recorded. Extremely high concen-
trations of the colonial planktonic alga Phaeocystis were observed on the examined
tape. Only two seconds of video were examined, for each of two sections. Three focus
detection algorithms were tested on these two sections of video. The outputs of each
algorithm were further examined by the same human operator, and the number of

in-focus/out-of-focus images was counted. The results are summarized in Tables 2.1,

and 2.2.

Table 2.1: Comparison of focus detection algorithms from AN9703, high magnification
camera, video section 1. The numbers are blob counts; probability of detection P,
and probability of false alarm Py are given as percentages.

Methods In-focus | Out-of-focus | Py Py
Manual count | 132 808 NA NA
Al 70 10 53% | 1.2%
A2 75 11 5% | 1.4%
A3 77 13 58% | 1.6%

Table 2.2: Comparison of focus detection algorithms from AN9703, high magnification
camera, video section 2. The numbers are blob counts; probability of detection P,
and probability of false alarm Py are given as percentages.

Methods In-focus | Out-of-focus | Py Ey
Manual count | 169 698 NA NA
Al 82 8 49% | 1.1%
A2 89 15 46% | 2.1%
A3 87 11 51% | 1.6%

The relative low probability of detection was due to the bottle-neck of the ROI
file-writing process, since there was an extremely high rate of ROI detection for
Phaeocystis. The whole process was synchronized in real time. Each field had only
16 milliseconds of processing time at most (since the video rate was 60 FPS). If it

took too long to process one field, the following fields would be skipped. In order
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to take this bottleneck into account, the focus detection algorithms were run on a
paused field which had one in-focus object (but still output the video signal at 60
FPS). The number of files which were written out during a one-minute interval was
counted. The ratio between this number and the ideal number (3600 in this case) was
the correction factor due to the slow-down caused by the disk writing process. The
P, after correction for video section 1 was quite good, because the average number of
in-focus objects present in this section was very close to 1 per field. However, for video
section 2, the average in-focus objects were close to 1.5 per field. Since a field cannot
have 1.5 in-focus objects, the same correction factor was used for both sections. Not
surprisingly, even after correction, P; was still relatively low in video section 2. The
corrected results are shown in Tables 2.3, and 2.4. It is worth mentioning that this
problem would be vanished with a computer having a faster hard drive (the computer
used in the test was a 1 GHz Dell, circa 2000). Furthermore, such a dense patch of
Phaeocystis was not usual for the focus detection program. The average in-focus
object rate in most field applications was less than 1 per second compared to more

than 60 per second in this case.

Table 2.3: Comparison of focus detection algorithms from AN9703, high magnification
camera, video section 1 after correction. The numbers are blob counts; probability of
detection Py and probability of false alarm Py are given as percentages.

Methods In-focus | Out-of-focus | Py Py
Manual count | 132 808 NA NA
Al 111 16 84% | 2.0%
A2 120 18 91% | 2.2%
A3 123 21 93% | 2.6%

Two video sections of the low-magnification camera from cruise HALOS, Cape
Cod Bay, March 1996, were also used to test the focus detection algorithms. Again,
the videos were dubbed from SVHS to BETACAM-SP. In this tape, very high con-
centrations of Pseudocalanus with eggs were observed. Five second intervals of video
were examined by a human operator since the concentration of the Pseudocalanus was
not as high as the Phaeocystis. The manual counting process and post-processing by

the focus-detection algorithm were the same as described above. The results are given
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Table 2.4: Comparison of focus detection algorithms from AN9703, high magnification
camera, video section 2 after correction. The numbers are blob counts; probability of
detection P, and probability of false alarm P; are given as percentages.

Methods In-focus | Out-of-focus | Py Py
Manual count | 169 698 NA NA
Al 1] 13 7% | 1.9%
A2 142 24 84% | 3.4%
A3 131 7 7% | 2.4%

in Tables 2.5, and 2.6. The relative low value of P, in Table 2.6 was due to a high
number of in-focus objects. The process of writing files affected the performance of
the algorithms, again correctable by a computer with faster hard disk drive.
Overall, all three algorithms did quite a good job on picking up in-focus objects,
while rejecting out-of-focus objects. The algorithms that took the gradient strength
into account (A2 and A3) worked a little better than the algorithm that thresholded
gradient information. Between the two strategies of brightness correction, the additive
worked as well as the multiplicative. Different parameter settings on the GUI (Fig 2-
2) trade-off between P, and Py. Since there were much higher numbers of out-of-focus
objects than in-focus objects on the video, the outcome of focus detection algorithm
was more sensitive to changes in P, than P;. Another way to look at this issue is
to check the percentage of in-focus objects from the outcome of each algorithm. For
example, in Table 2.6, of 132 images chosen by A3 to be in-focus, 107 images were
truly in-focus. That is to say, 81% of the output from A3 was true positive. A low true
positive rate will increase the difficulty level of the subsequent classification problem
and waste computational resources and disk space. On the other hand, a high true
positive rate may result in undersampling the underlying population of plankton.
The manual counting process only counted the number of in-focus objects and out-
of-focus objects on each field. For each algorithm, the output images were examined
by the same human operator in order to decide how many objects were in-focus
and out-of-focus. The whole process was subjective. For each object, the image
was not co-registered from the video to output images of each algorithm. The co-

registration of every single object would be labor intensive. However, by only counting
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Table 2.5: Comparison of focus detection algorithms from HALOS, low magnification
camera, video section 1. The numbers are the blob counts; probability of detection
P, and probability of false alarm Py are given as percentages.

Methods In-focus | Out-of-focus | Py Py
Manual count | 116 597 NA NA
Al 89 23 7% | 3.9%
A2 98 16 84% | 2.7%
A3 107 25 92% | 4.2%

Table 2.6: Comparison of focus detection algorithms from HALOS, low magnification
camera, video section 2. The numbers are the blob counts; probability of detection
P, and probability of false alarm Py are given as percentages.

Methods In focus | Out focus | Fy Hy
Manual count | 161 736 NA NA
Al 106 32 66% | 4.4%
A2 110 28 68% | 3.8%
| A3 121 30 5% | 4.1%

the number of in-focus and out-of-focus objects, additional error was introduced by
self-inconsistency. Nevertheless, this was the first quantitative study of focus detection
algorithms. A correction factor is needed to interpret the focus detection output in

the regions of extremely high plankton concentration.

2.4 Conclusion

A very large amount of data collected from an image-forming plankton sampler re-
quires an automatic focus detection program to extract only in-focus objects from
video. In this chapter, three algorithms were developed and tested on four video
sections from VPR. This was the first quantitative study of focus detection program
algorithms. In general, the algorithms have good performance for extracting in-focus
objects without extracting too many out-of-focus objects. However, care is needed

to interpret the focus detection output, especially in the regions of extremely high

plankton concentration.
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Chapter 3

Classification Method: Analysis

and Assessment

A learning vector quantization neural network (LVQ-NN) classification system with
combined shape-based features has been investigated. The objective of this study
was to fully understand how the LVQ-NN classification system behaved on the field-
collected plankton data. Multiple factors such as classifier complexity, number of
training samples, quality of training samples, feature length, and presentation order
of training samples have been examined. Three different methods have been proposed
and implemented to improve the LVQ-NN classifier. This study suggested that the
LVQ-NN classification system was very robust to varied parameter changes. However,
for shape-based features, there was very limited improvement on classifying field-
collected plankton images. The big classification performance difference between this
study and previous studies indicated that previously reported accuracy of LVQ-NN
was optimistically biased. Part of the results in this chapter was published in Marine
Ecology Progress Series[34].

This chapter is organized as follows. In Section 3.1, I describe a state-of-the-art
LVQ-NN classification system developed by Tang [150]. This system is well accepted
but not well assessed. In Section 3.2, I investigate this system by changing classi-
fier complexity, feature length, numbers of training samples, initial neuron position,

presentation order of training samples, different training samples and classification
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stability. In Section 3.3, I develop a two-pass classification system based on this
LVQ-NN classification system. In Section 3.4, I propose a method to correct the
bias of the classification system. In Section 3.5, I develop a distance rejection metric
on LVQ-NN classification system. Part of the results discussed in this chapter was

published in Davis et al.[34]

3.1 System overview

3.1.1 Artificial Neural Networks

Artificial Neural Networks (ANN) have experienced three periods of extensive activ-
ity. The first peak in the 1940s was due to McCulloch’s pioneering work [113]. The
second in the 1960s was Rosenblatt’s perceptron convergence theorem [136]. Minsky
[116] showed that a single perceptron was not able to solve a simple XOR problem.
Such limitation dampened the progress in ANN. The third peak was due to the Hop-
field’s energy approach [70] and back-propagation learning algorithm for multilayer
perceptrons by Werbos [167], and later popularized by Rumelhart [137].

The great benefits of the ANN are the simplicity of the learning algorithm, the
ease in model selection, and incorporation of heuristic information and constraints.
ANN has been widely used in feature extraction [110, 105], character classification

[97, 98], speaker identification [124], and general object classification [148, 150].

3.1.2 Learning vector quantization neural network classifier

Learning vector quantization (LVQ) is a supervised version of vector quantization. Its
objective is to learn a set of prototypes (codebooks) which best represent each class.
We implement it with an artificial neural network [150, 34]. The neural network has
two layers, namely a competitive layer and a linear output layer. The complexity
of the neural network (prototypes of subclass, number of neurons) is based on the
number of training samples and the number of classes in the classifier. The number

of output layer neurons is equal to the number of taxa. The weights of the neurons
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for each class are initialized to be the mean of the training feature vectors for that
class plus a small random value. The network is trained by randomly presenting the
training samples to the network. Each training sample is classified by the current
LVQ neural network. Depending on the outcome of the classifier, the weights of the
neurons are adjusted in the following two ways: If the predicted label of a sample
agrees with its true label, the weights of the winning neuron (prototype) are updated
in such a way that the winning neuron moves a step closer to the training sample in
the feature space; otherwise, the weights of the winning neuron are updated such that
the winning neuron is pushed a step away from the training sample in the feature
space. The training process stops when the preset goal or the maximum training time

is reached. The trained network is saved as the final classifier.

3.1.3 Principal component analysis

Principal Component Analysis (PCA) is widely used in signal processing, statistics,
and pattern recognition [84]. Denote x = (x), 3, -+ ,T,)! as a n-dimensional original
il

feature vector, and y = (y1,¥2," - ,¥m)’ as a m-dimensional final feature vector

(m < n), PCA seeks a linear transformation T, such that
== T, (3.1)

where T is m x n matrix. The main idea of the transformation is to explain the
maximum amount of variance in n-dimensional vector x by a much lower dimensional
vector y. In other words, PCA seeks a linear projection that best represents the data
in the mean-square sense.

In order to find the transformation matrix T, p observations of x (p training
samples, p > n) are required. First, the n-dimensional mean vector p and n x n
covariance matrix X are computed from all the training samples. Next, the eigenvec-
tors and eigenvalues are computed from the covariance matrix, and sorted according
to decreasing order of eigenvalue. Denoting these eigenvectors as eq, ez, -+ , e, and

corresponding eigenvalues as A, A9, - -+, A,,, and choosing the m eigenvectors having
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the largest eigenvalues, we form an m x n matrix T whose rows are transposes of
the m eigenvectors. The representation of data by PCA projects the data onto the

m-dimensional subspace according to

y=Tx-p). (3.2)

3.1.4 Feature extraction

For each sample image, four different groups of feature presentation methods are used,
which include 7 moment invariants, 64 Fourier descriptors, 160 pattern spectra, and 6
morphological measurements. These features are combined into a single feature vector
with 237 elements. All the feature elements are first normalized to zero mean and
unit standard deviation. Principal component analysis is then applied on this feature
vector to eliminate linear dependence among elements of the feature vector. The 20-30
largest eigenvalues account for nearly all the variances in feature space of the training
samples. The corresponding eigenvectors are saved and used as a transformation
matrix. All the non-training samples are normalized and projected onto these 20-30
orthogonal bases via the transformation matrix. The resulting feature vector is the

input of the LVQ neural network classifier.

3.1.5 Classification performance estimation

After a classifier has been built, its classification generalization performance (perfor-
mance from a set of independent samples) needs to be evaluated. For finite sample
sizes and unknown class-conditional distribution, the only way to estimate the gen-
eralization performance is to use an empirical method. There are three empirical
ways to estimate the generalization performance. The first approach is often called
the resubstitution method, which involves classifying all the training samples, and
uses classification accuracy on training samples as generalization performance. It is
fast and does not require extra labeled samples. Nevertheless, this method has an

optimistically biased estimate of classification performance.

o6



The second approach is often called the cross-validation method, which can be
further divided into three cases. The first case is often called holdout method, which
uses a completely independent test data set to evaluate generalization performance
of a classifier. The drawback of this method is that it requires twice as many labeled
samples as resubstitution. According to Jain et al. [77], this estimate is pessimistically
biased. From the results in this chapter, I do not get any pessimistically biased
estimates. I used the holdout method as a classification performance estimate from
the whole data set. Since there is an overlap between training samples and test
samples, strictly speaking, it is a misnomer. However, the overlap is small and the
difference between training accuracy and test accuracy of the classifier is also small.
[ argue that the difference between the “true” holdout and my pseudo-holdout is

negligible.

The second case of the cross-validation method is often called the leave-one-out
method, which involves building n classifiers with n — 1 training samples. Each time,
a different sample is left out to build a classifier and used to test the classifier. Here
n is the number of total training samples. The leave-one-out method is computation
demanding, and it has an unbiased estimate with large variance [77]. The third case
of the cross-validation method is the rotation method, also called an n-fold cross
validation method, which is a compromise between the holdout and leave-one-out
methods. It divides the training samples into p disjoint subsets, using p — 1 subsets

for training a classifier and the remaining subset for testing the classifier.

The third approach is called the bootstrap method, which involves generating
multiple bootstrap sample sets of size n by sampling all the training samples with
replacement. The bootstrap bias and variance estimate can be estimated from boot-
strap sample sets. When the number of bootstraps approaches infinity, the boot-
strap variance becomes the traditional variance of mean [42]. In this chapter, the
resubstitution, leave-one-out, and holdout methods are used to estimate classification

performance.
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3.2 Assessment Result

3.2.1 Classifier complexity vs. classifier performance

The relationship between classifier performance and classifier complexity is investi-
gated first. The classifier complexity is characterized by the number of neurons per
taxon, which governs the expressive power of the neural network. The neurons are
evenly distributed among taxa. Classifiers with 3 neurons per taxon up to 100 neu-
rons per taxon are trained with the same amount of training samples. The training
samples come from a mixture of four VPR tows from the same cruise [34]. Each
classifier is applied to all the images from a single VPR tow, which includes more
than 20,000 images. Classification accuracy is obtained by comparing the predicted
classification label with the human label for each image. The classification accuracy
rises from 3 to 4 neurons per taxon, reaches its peak at 10 to 15 neurons per taxon,
and then hovers around with an overall accuracy of 59-60% (Figure 3-1). No obvious
over-training effect is observed. This can be seen more clearly in Figure 3-2. How-
ever, when a large number of neurons is used, the classifier takes a long time to train.
Furthermore, when classification performance is inferred from training accuracy (e.g.
resubstitution method), using a large number of neurons can result in a large bias on
the classification accuracy estimation (for example, Tang [148, 150] used an average

of training and test accuracy to compare classification performance).

3.2.2 Feature length versus classification performance

Final feature length may play an important role in classification performance. Choos-
ing a short feature length may lose the discriminative power of the feature set, while
choosing a long feature length may include noise to degrade classification performance.
In this study, feature lengths from 2 to 40 are examined. Again, classifiers are trained
from a mixture of four VPR tows from the same cruise. A total of 70 neurons are
used to train the classifiers, which are evenly divided into 7 taxa with 10 neurons

per taxa. The classification performance of different taxa varies differently with the
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Figure 3-1: Classification performance with respect to classifier complexity.
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change of feature length (Figure 3-3). Some taxa have relatively steady classification
performance, while the others have more variations with the change of feature length.
However, the overall classification performance (average over all the taxa) is fairly
steady and reveals a slight increase with increasing feature length (Figure 3-4). The
steady increase of training accuracy with feature length suggests that extra features
capture training sample specific features instead of general features of each taxon.

On the other hand, the test accuracy curve is fairly flat from the feature lengths from

20 to 40 (Figure 3-4).
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Figure 3-3: Classification performance as a function of feature length for each taxon.

3.2.3 Learning curve - numbers of training samples versus

classifier performance

The number of training samples is an important factor for supervised learning. Few

training samples may not fully present the feature space, while a large number of
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training samples are very costly to get because labeling requires extensive expert,
time. Training on a very large data set is also computationally intensive, which may
take days or even months. In this study, the relationship between the number of
training samples and classification performance is explored empirically. The objec-
tive is to understand how many training samples are “good” enough in the sense of
manual labeling efficiency. Training samples are randomly selected from the whole
data set. The classification performance as a function of training sample size for each
taxon is shown in Figure 3-5. In general, classification performance tends to increase
with more training samples being available. For copepod and rod-shaped diatom
chains, classification accuracy remains almost the same from 50 samples per taxon to
400 samples per taxon. For other taxa, classification accuracy increases with more
training samples added. Compared to Figure 3-1 and Figure 3-5, there are signifi-
cant differences of classification accuracy for copepod and rod-shaped diatom chains.
Such differences are caused by different training samples used. I will discuss more on
the training samples effect later in this chapter. Figure 3-6 shows training and test
classification accuracy with respect to training sample size (learning curve). From 50

to 200 training samples per taxon, the test classification accuracy has an increase of
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4% with respect to an increase of 100 samples per taxon. From 200 training samnples
to 400 training samples per taxon, the increase of test classification accuracy drops
down to 0.5% with an increase of 100 samples per taxon. I conclude that 200 train-
ing samples per taxon is the optimal number of training samples in terms of manual
labeling efficiency. Hereafter, 200 training samples per taxon are used if it is not
explicitly stated. However, as shown in Figure 3-5, the optimum training samples
per taxon is taxon dependent. For relatively “easy” taxon such as rod-shaped diatom
chains, a small number of training samples are sufficient. On the other hand, for really
“hard” taxon such as copepods, considering large within-taxonomic group variation

of copepods, such difference in training sample size has small effect on classifcation

accuracy.
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Figure 3-5: Classification performance as a function of training sample size for each
taxon.

62



100 T T T T | T

%0k ~— test accuracy )
o —¥— training accuracy
8
3 8o .
(&)
(o]
§ 7of B
IS
0 - = g
2 6eof ) 1
2 g
O

50 S

40 | | | | | I |

0 50 100 150 200 250 300 350 400

Trainina sample size

Figure 3-6: Training and test accuracy with respect to training sample size.

3.2.4 Initial neuron position versus presentation order of train-

ing samples

There are two sources of randomness when the classifiers have been trained with the
same training samples. The first one is the initial positions of neurons before the train-
ing processes start. The second one is the presentation orders of the training samples
to the classifiers. Both randomized initial position of neurons and presentation order
of training samples are used in order to speed up the learning process. In this section,
[ investigate which source of randomness may have the largest impact on classification
performance. Two sets of tests are conducted. In both sets of tests, each classifier
is built on the same training samples with 200 training samples per taxon randomly
selected from the whole data set. For simplicity, the resubstitution method is used
to evaluate classification accuracy. Since the classification performance is compared
in the relative sense, I have used training accuracy as a classification performance
indicator. The mean and standard deviation of training accuracy are calculated from
10 different trials. The difference between the first set of tests and the second set of

tests is that in the first set of tests each classifier has both different initial position of
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neurons and different presentation order of training samples, while in the second set
of tests each classifier starts with same initial position of neurons and is trained with
different presentation order of training samples. The result is shown in Figure 3-7.
The mean and standard deviation of the classification performance are almost identi-
cal, which suggests that different initial positions of neurons have little effect on the
final classifiers. This agrees a well known result that the random presentation order

of training samples has more impact on classification performance.
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Figure 3-7: Comparison between the random initial position of neurons and random
order of presentation order of training samples. IP1 - different initial position of
neurons, random representation order of training samples; [P2 - same initial position
of neurons, random representation order of training samples

3.2.5 Training samples effect

Classifiers are not only affected by the size of the training samples, but also by the
quality of the training samples. We have already seen from Figure 3-1 and Figure 3-5
that different training samples significantly affect the classification accuracy of cope-
pod and rod-shaped diatom chains. In this section, we try to quantify classification

performance variations from different training samples. Three sets of tests have been
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conducted for this manner. For all the tests, training samples are randomly selected
from the whole data set with 200 samples per taxon. In the first set of tests (TS1),
each classifier is built from different training samples, and is then evaluated by the
leave-one-out method. In the second set of tests (TS2), each classifier is also built
from different training samples, and is evaluated by the holdout method. In the third
set of tests (T'S3), each classifier is built from the same training samples, and eval-
uated by the holdout method. The results are shown in Figure 3-8. It is interesting
to see that the leave-one-out method has high estimates on certain taxa such as rod-
shaped diatom chain and hydroid medusae, while it has low estimates on other taxa
such as copepod and Chaetoceros chains. This does not agree with the statement that
the leave-one-out estimate is unbiased and the holdout estimate is pessimistically bi-
ased by Jain et al. [77]. The overall classification accuracy is very close between
the leave-one-out method and the holdout method, given that training samples are
randomly selected from the whole data set. Otherwise, the cross validation (leave-
one-out) method may still have a biased estimate of classification accuracy [34]. In
general, the variation of classification accuracy (variance of mean accuracy) is much
smaller when classifers are trained by a single set of training samples than different
sets of training samples. Such variation is also taxon dependent. For “easy” taxon
such as rod-shaped diatom chains, the variation is much smaller compared to “hard”
taxon such as copepods. The variation of the leave-one-out method is similar to that

of the holdout method.

3.2.6 Classification stability

The stability of a classfier, namely, how the classifier is affected by changing the
training samples, has been used to study generalization performance of the classfier
by many researchers theoretically [13, 43]. In this section, I have investigated stability
of our LVQ-NN classifier in terms of variance of abundance estimation of each taxon.
Nine classifiers are built from different random sets of training samples, which contain
200 samples for each taxon, and are randomly picked from the whole data set. Each

classifier is then used to classify the whole data set. The mean and standard deviation
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Figure 3-8: Comparison of different training samples effect on classfication perfor-
mance. TSI - different sets of training samples, leave-one-out method; TS2 - different
sets of training samples, holdout method; TS3 - single set training samples, holdout
method

abundance are calculated. The mean, upper and lower limit of 95% confidence in-
terval abundances are ploted against manually sorted abundance (Figure 3-9). Most
taxa have stable classification results except copepods, which show a large difference

between the upper and lower limit of 95% confidence interval.

3.3 'Two-pass classification system

When a classifier is used to estimate abundance, there are two sources which make
the estimation biased. The first source is the relative abundance of each taxon. The
classifier tends to underestimate the relative high abundance taxon and overestimate
the relative low abundance taxon. For example, suppose that a sample contains 2
taxa, with 90 individuals of one taxon and 10 individuals of the other taxon. For both
taxa, the classifier has the probability of detection of 90%. The expected number of
individuals classified as the first taxon is (90 x 0.9) + (10 x 0.1) = 82 and the expected
number classified as the second taxon is (10 x 0.9) + (90 x 0.1) = 18. Despite the
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Figure 3-9: Mean, upper and lower limit of 95% confidence interval of abundance
estimates from LVQ-NN classifiers and that of manually sorted results. Time series
abundance plots along the tow path are shown for 6 dominant taxa. Data were first
binned in 10 second time intervals, and a one-hour smoothing window was applied to

the binned data.
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classifier having a relative high probability of detection of 90%, the abundance of the
rare taxon in the sample is, on average, overestimated by a factor of nearly 2. The
second source is uneven probability of detection. It is easy to show in the two taxa
case. Suppose that a sample contains 2 taxa, with 50 individuals of one taxon and
50 individuals of the other taxon. The classifier has probabilities of detection of 90%
and 50% for each taxon, respectively. The expected number of individuals classified
as the first taxon is (50 x 0.9) + (50 x 0.5) = 70 and the expected number classified
as the second taxon is (50 x 0.5) + (50 x 0.1) = 30. Although two taxa are equally
abundant, the classifier has overestimated the taxon with the higher probability of

detection.

3.3.1 Decision rules

The above problem arises from uneven distribution and probability of detection. One
way to overcome such a problem is to design a classifier under minimax criterion.
Briefly speaking, one first searches for the prior for which the Bayes risk is maximumn,
one then finds the decision boundary to minimize the above Bayes risk. The solution
is often called the minimax solution. Denoting that R, is the region in feature spacc
where the classifier decides w), and likewise R decides ws, one can write the overall

risk of the classifier in terms of conditional risks [42]:

H= /r A1 P(w)p(x|wy) + A2 Pwe)p(x|ws)]dx

+/ A2 P(w))p(x|wr) + Asg P(we)p(x|wy)]dx, (3.3)
JRo

where P(w;) is prior probability, p(x|w;) is conditional probability, and A;; is the loss

function. If one uses the fact that P(w;) = 1 — P(ws) and that le p(x|w )dx =
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1 — [, p(x|w2)]dx, one can rewrite the above risk function as:

mpwnyzhr+ﬁm—&»z;Mﬂwwk

+ Plw)[(An = Aaz) + (A = Aur) /R

p(x|wy)dx — (A3 — /\22)/ p(x|ws)|dx].

R
(3.4)

[f one sets the second term at the right hand side of the above equation equal to
zero, the risk function is independent of prior probabilities. Such a solution is called

a minimax solution. When the zero-one loss function is used, i.e.,

0 i=j
Am:{ (3.5)
1 i#j

the condition of the minimax solution can be simplified as,

/R2 p(x|wi)dx —/ p(x|ws))dx = 0. (3.6)

R

Another way is to use recursive prior estimation. Since in most real world problems,
the form of the conditional probability distribution is complicated or even unknown,
finding the decision boundary of the minimax solution is not trivial. In this section,
we adopt the second approach, that is to say, we try to recursively estimate the priors.

The three most popular decision rules are illustrated in Figure 3-10. The max-
imum likelihood (ML) decision rule seeks the intersection between two conditional
probability distributions, and the corresponding decision value is z};;,. The max-
imum a posteriori (MAP) decision rule seeks the intersection between two scaled
conditional probability distributions, and the corresponding decision value is z}, 4p.
The scaling factor is the ratio of the priors of the two classes. The minimax decision
rule seeks a decision value z3;,, which makes the areas under the two distribution
tails equal.

In my application, I have used classification to estimate the fine resolution of

priors for each taxon. Before classification, nothing is known about the priors, so a
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Figure 3-10: Illustration of the three most popular decision rules. x},, - maximum
likelihood decision rule, z};4p - maximum a posteriori decision rule, z},,, - mninimax
decision rule

ML decision rule is applied in the first classifier. Local priors can be estimated from
the first classification results using a moving window average method (for example,
calculate from the latest 100 samples). The priors estimated from the first classifier
arc then applied in the second classifier based on a MAP decision rule. 1 call such a
system a two-pass classifier since each sample needs to be classified twice.

The structure of the two-pass classifier is shown in Figure 3-11. There arc two
classifiers involved in the two-pass classification system. The first classifier is the same
as a single classifier, the outcomes of which are used to estimate local priors for cach
taxon. The predictions of the first classifier are collected by a prior estiimmator. After
collecting a certain number of samples, local priors of each taxon will be reported by
the prior estimator. These local priors are updated afterwards when a new sample
is available. The second classifier utilizes the local priors as well as the same featurc
vector used in the first classifier to get a better prediction for each sample. For
simplicity, the algorithms of the two classifiers are identical, the only difference is the
priors of each taxon. Priors of the first classifier are set to uniform for all taxa, while

priors of the second classifier are calculated from the prior estimator. The rationale
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of two-pass classification is that as long as the first classifier is better than a random
guess, the priors estimated from it are much better than uniform priors. Given this
piece of information, the second classifier will further improve the prediction of each

sample beyond that of the first classifier.

3.3.2 Implementation

To summarize the above discussion, the two-pass classification system can be imple-

mented in the following steps:

1. Train a LVQ neural network classifier with an equal number of training samples

for each taxon.

2. Generate a confusion matrix with the leave-one-out method from training sam-

ples. Calculate the probability of detection (FPy) for each taxon.
3. For each field sample, classify it with the classifier built above.

4. Set up a first-in-first-out (FIFO) queue. If the queue is not filled, output the

predicted class<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>